Evaluation of regulatory potential and conservation scores for detecting cis-regulatory modules in aligned mammalian genome sequences.
نویسندگان
چکیده
Techniques of comparative genomics are being used to identify candidate functional DNA sequences, and objective evaluations are needed to assess their effectiveness. Different analytical methods score distinctive features of whole-genome alignments among human, mouse, and rat to predict functional regions. We evaluated three of these methods for their ability to identify the positions of known regulatory regions in the well-studied HBB gene complex. Two methods, multispecies conserved sequences and phastCons, quantify levels of conservation to estimate a likelihood that aligned DNA sequences are under purifying selection. A third function, regulatory potential (RP), measures the similarity of patterns in the alignments to those in known regulatory regions. The methods can correctly identify 50%-60% of noncoding positions in the HBB gene complex as regulatory or nonregulatory, with RP performing better than do other methods. When evaluated by the ability to discriminate genomic intervals, RP reaches a sensitivity of 0.78 and a true discovery rate of approximately 0.6. The performance is better on other reference sets; both phastCons and RP scores can capture almost all regulatory elements in those sets along with approximately 7% of the human genome.
منابع مشابه
Experimental validation of predicted mammalian erythroid cis-regulatory modules.
Multiple alignments of genome sequences are helpful guides to functional analysis, but predicting cis-regulatory modules (CRMs) accurately from such alignments remains an elusive goal. We predict CRMs for mammalian genes expressed in red blood cells by combining two properties gleaned from aligned, noncoding genome sequences: a positive regulatory potential (RP) score, which detects similarity ...
متن کاملAn evolutionary constraint: strongly disfavored class of change in DNA sequence during divergence of cis-regulatory modules.
The DNA of functional cis-regulatory modules displays extensive sequence conservation in comparisons of genomes from modestly distant species. Patches of sequence that are several hundred base pairs in length within these modules are often seen to be 80-95% identical, although the flanking sequence cannot even be aligned. However, it is unlikely that base pairs located between the transcription...
متن کاملComputational prediction of cis-regulatory modules from multispecies alignments using Galaxy, Table Browser, and GALA.
One major goal of genomics is to identify all the functional sequences in genomes, including sequences that regulate the expression of genes. Sequence conservation is a good, albeit imperfect, guide to these functional elements. We describe how to use publicly available servers (Galaxy, the UCSC Table Browser, and GALA) to find genomic sequences whose alignments (from blastZ and multiZ) show pr...
متن کاملCisView: a browser and database of cis-regulatory modules predicted in the mouse genome.
To facilitate the analysis of gene regulatory regions of the mouse genome, we developed a CisView (http://lgsun.grc.nia.nih.gov/cisview), a browser and database of genome-wide potential transcription factor binding sites (TFBSs) that were identified using 134 position-weight matrices and 219 sequence patterns from various sources and were presented with the information about sequence conservati...
متن کاملPhylogenetic Analysis of Three Long Non-coding RNA Genes: AK082072, AK043754 and AK082467
Now, it is clear that protein is just one of the most functional products produced by the eukaryotic genome. Indeed, a major part of the human genome is transcribed to non-coding sequences than to the coding sequence of the protein. In this study, we selected three long non-coding RNAs namely AK082072, AK043754 and AK082467 which show brain expression and local region conservation among vertebr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genome research
دوره 15 8 شماره
صفحات -
تاریخ انتشار 2005